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With the help of recent results in the mathematical theory of master equa- 
tions, we present a rigorous derivation of the stochastic Glauber dynamics 
of Ising models from Hamiltonian quantum mechanics. A thermal bath is 
explicitly constructed and, as an illustration, the dynamics of the Ising- 
Weiss model is analyzed in the thermodynamic limit. We thus obtain an 
example of a nonequilibrium statistical mechanical system for which a 
link without mathematical gap can be established from microscopic 
quantum mechanics to a macroscopic irreversible thermodynamic process. 
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1. J I N T R O D U C T I O N  

In  1963, Glauber  proposed  a stochastic Ising model  in which the spins change 
their state r andomly  with time according to a cont inuous M a r k o v  process. (1) 
The underlying physical picture is that  the spin system, considered as open, 
interacts with an external heat ba th  with which it can exchange energy and 
which causes the spins to flip r andomly  at a given rate. 

The success o f  the model  lies in the fact that  it can be used as a starting 
point  for  various interesting investigations. First, it provides a simple exam- 
ple of  a dissipative system whose t ime-dependent  behavior  can be precisely 
anaJyzed in some cases. Second, it furnishes an efficient tool  to investigate 
some dynamical  aspects o f  the Ising model  near the critical point  analyti- 
cally as well as by numerical calculations (see, for  instance, Refs. 2 and 3 
and the references quoted there). The stochastic Ising model  has also been 
considered in connect ion with the definition o f  metastable states in a mean 
field t reatment  o f  the ferromagnet  (4) and, more  recently, in the case o f  
short-range forces. (5) Moreover ,  it constitutes a subject o f  mathematical  
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interest by itself, in the framework of the theory of Markov processes and 
Gibbs states on lattices (see, for instance, Refs. 6 and 7 and the references 
quoted there). 

However, there are some basic questions concerning the physical 
foundations of the model which have not yet been fully elucidated. They 
are the following: 

(a) Is it possible to derive the stochastic dynamics of Ising models 
from the principles of Hamiltonian mechanics ? 

(b) How do the effects of the coupling with the external agency manifest 
themselves on the dynamics of spins ? 

A justification of the stochastic dynamics and an answer to point (a) 
has been attempted in Ref. 8 on the basis of the Bloch and Wangsness 
relaxation theory, C~'1~ but this study is unsatisfactory insofar as the mathe- 
matical validity of the latter theory is not established and the thermal bath 
is not explicitly constructed. 

The purpose of this work is to present a rigorous derivation of the 
stochastic dynamics from the Hamiltonian mechanics of the coupled systems 
in the so-called weak coupling limit. This is done with the help of recent 
mathematical progress in the theory of master equations, Clx) which we 
briefly recall in Appendix A. 

A finite-dimensional quantum system ~1 is coupled with a heat bath 
Zz of infinite size. At time t = 0 the states of the two systems are assumed 
to be uncorrelated: The state of Z~ is arbitrarily prepared, whereas the bath 
is in thermal equilibrium. The interaction is switched on, and one follows 
the evolution of the part of the total state reduced to the system of interest 
by taking a partial trace on the degrees of freedom of the bath. The reduced 
state obeys a general integrodifferential equation (generalized master equa- 
tion), but not much can be said on its solutions, except in a favorable limiting 
situation. 

This limiting case is obtained by a scaling of the time t, setting ~- = )t2t 
and letting h -+ 0, t ~ oo, with ~- fixed, where 2, measures the strength of the 
coupling between ~1 and the bath. One can say heuristically that in this 
idealized situation (first considered by Van Hove (12)) one takes into account 
the nonvanishing cumulative effects on ~ as t ~ oo of its very weak inter- 
action with an extensive external system. 

The point is that the generalized master equation is mathematically 
tractable in the weak coupling limit, where it can be shown to reduce to the 
usual Markovian (Pauli type) master equation. 

In Section 2, we formulate the model that we want to consider. We do 
not aim to achieve maximal generality, but on the contrary suppress any 
irrelevant complexity for the sake of mathematical transparency. The bath 



Stochastic Dynamics of Ising Models 151 

Z2 will consist of quasifree assemblies of Fermi particles or elementary 
excitations with a given energy spectrum 2 (for instance, the free nonrela- 
tivistic Fermi gas). A finite quantum lattice spin system or more precisely 
its classical part, i.e., the z component of the spin angular momentum, 
constitutes the object of interest Y~I. The two systems will be able to exchange 
energy via an interaction which we choose to be linear both in the individual 
spin operators and the Fermi fields. We show then that the generator of the 
Markov process on the classical states of the spins obtained in the weak 
coupling limit coincides with the spin flip process postulated in the stochastic 
Ising dynamics of Glauber. Moreover, an important feature which emerges 
from this treatment is that the usually arbitrary parameters occurring in the 
transition probabilities are now completely specified by the nature of the 
bath and of the coupling. In particular it is well known that the thermal 
state of a quasifree field is uniquely determined by its two-point correlation 
function. It will be seen that the rate at which transitions between spin states 
take place is essentially given in terms of the Fourier transform of this 
correlation function. 

In order to illustrate these points in an explicitly solvable model, we 
study in Section 3 the dynamics of the open Ising-Weiss model. We derive 
an evolution law for the probability distribution of a macroscopic observ- 
able, the magnetization density. The link between microscopic and macro- 
scopic evolution is established by considering a certain class of macroscopic 
states for which we obtain an irreversible equation of motion in the thermo- 
dynamic limit. The latter equation, which is similar to those discussed in 
Ref. 2, is solved without difficulty. The bifurcation which occurs at the 
critical temperature is discussed, as well as the influence of the bath on the 
relaxation properties. The effects due to the finite number N of spins can 
also be taken into account. In particular, to order l/N, the magnetization 
obeys a Fokker-Planck equation. The fluctuations are normal in the 
neighborhood of a stable equilibrium point except when the temperature 
is critical, in which case they are of order N-  1/4 instead of the usual O(N- 1/2). 
Finally, Appendix B is devoted to the study of the mathematical structure 
of the macroscopic evolution law. The point is that in each phase the full 
evolution is asymptotic, as the time goes to infinity, to the motion obtained 
by linearizing the equation around the equilibrium point. The full motion 
and its linearization are linked by an asymptotic relation which is similar 
to that occurring in scattering theory, and the technique may prove to be 
useful in cases where the equation of motion cannot be solved explicitly. 

Before concluding this introduction, we point out that what this model 
gives us is an example of a nonequilibrium statistical mechanical system for 

2 The Fermi rather than the Bose statistics are chosen for mathematical convenience. 
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which a link without mathematical gap can be established from microscopic 
quantum mechanics to a macroscopic irreversible thermodynamic process. 
For this reason, we found it worthwhile to expose it to the full extent. It  is 
important in particular to notice the involved limits and the order in which 
they occur. First of all the thermodynamic limit is taken on the bath, keeping 
the spin system finite (technically, this is done in Section 2 by considering 
from the beginning the bath as an infinite quantum mechanical system in a 
Kubo-Martin-Schwinger state). Then the dynamics of the spins is studied 
in the weak coupling limit and finally the thermodynamic limit is also taken 
on the spins for a suitable class of nonequilibrium macroscopic states 
(Section 3). This order is not irrelevant; in particular, since both systems 
are eventually macroscopic, we ensure that the Fermi fields really play 
their role of a thermal bath by first taking their thermodynamic limit. 

The model is of course subject to criticism related to its mean field 
nature (i.e., size-dependent forces), and one may also question the interpreta- 
tion of the limiting procedures. However, it has the merit of presenting a 
scheme in which every step can be exposed and discussed with full clarity. 

2. DERIVATION OF THE STOCHASTIC D Y N A M I C S  OF 
ISING M O D E L S  

We start by specifying the microscopic models of the spin system and 
of the heat bath. 

2.1. The Spin System Y'z 

The spin system Z1 consists of a finite quantum lattice A of spins �89 
with N lattice sites. We denote by 

; oj (1 ~ o )  

the spin operators attached to the lattice site j and acting on Cj 2. An Ising- 
type Hamiltonian is given on ~ = I-Ij~A Cj 2 by 

t , j~A 

The coupling constants J~j = Jj, are real, with J ,  = O, and they are not 
subjected here to any other requirement. 

We define the classical part of Z1 as follows. Let d ~ be the algebra 
generated by the operators ~j~,j ~ A. If/~ is any density matrix on ~ ,  we call 
the classical part of the state the restriction of ~ to the algebra d ~. Let o~ 
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be a configuration of the Ising model, where oJ is a function from A into 
{ -  1, 1}, oJ(j) = + 1 giving the value of the z component of the spin at the 
site j. To each configuration oJ we associate the eigenvector X,o ~ ~r which 
is common to all oj ~, with aIXo~ = ~o(j)xo~. Then d r is identified with the 
set of functions A(co) on configuration space by Axo, = A(o~)xo,, and the 
diagonal elements (Xo,, t~X~o) = t~(o~) of/~ define a probability distribution 
on configuration space with 

T r ~ / z A  = ~/~(oJ)A(~) 

Moreover, we say that/z is classical if t~ has no off-diagonal matrix elements, 
i.e., (Xo,, t~Xo,,) = 0 when ~o' ~ oJ. 

2.2. The Thermal Bath ~2 

The bath consists of quasifree Fermi fields at thermal equilibrium. We 
denote by /; the one-particle Hilbert space and by ~(f)  the Fermi field 
operator smeared with a function f i n  /L The state of a quasifree Fermi field 
at temperature T = (k/3) -z (k is the Boltzmann constant) is completely 
determined by its two-point correlation function (lm 

@(f)r = (f, g) + ([expfih + 1]-lg, f )  

- ([exp/3h + l l - l f ,  g), f ,  g e  ,~ (1) 

where (f, g) is the scalar product in /; and h is the one-particle Hamiltonian. 
The Fermi operators ~(f) ,  f ~  ,~, satisfy the anticommutation relations 

on the Hilbert space ,Y" of the representation defined by (1). The space ~Y" 
is constructed from a vector ~ cyclic with respect to the algebra generated 
by the field operators, with the property 

(f2, ~0(f)a) = 0, (a ,  ~(f)~o(g)a) = @(f)~(g))e (2) 

The time evolution of the field is implemented on af" by an evolution 
operator exp ( - iH t )  such that 

cp(exp(- iht) f )  = exp( -  iHt) q~(f) exp(iHt) 

and f~ is left-invariant 

exp( - iHt ) f~  = f~ (3) 

For a given f e  /~ we denote by C(t) = (q~(exp(--iht)f)q~(f))B the two- 

point, time-dependent correlation function, and by C(x) = f dt exp(ixt)C(t) 
its Fourier transform2 

a In the distribution sense if C(t) is not integrable. 
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Then it follows from (1) that C(x) /> 0 and ~(x) satisfies the Kubo-  
Martin-Schwinger relation: 

d*(-x) = exp(~x) 0(x) (4) 

For instance, we have in the free nonrelativistic case 

~ = ~~ (exp(-  iht)f)(p) = exp - i t p) 

_f d~p If~)l~ exp[i(p2/2m)(t - i~)] + exp[-i(p2/2m)t]  C(t)  exp(fl(p2/2m)) + 1 (5) 

We construct now our thermal bath as follows. To each lattice site 
j ~ A we associate an identical and independent copy of the above-described 
Fermi system with Hilbert space JY(j., cyclic vector ~j, field operator ~j(f), 
and Hamiltonian Hi. Therefore Y~2 consist of N identical uncoupled Fermi 
systems on ~ = 1-~j~^ ~ with total Hamiltonian//2 = Y.j~A Hs. 

Finally, we couple each spin with its own bath linearly in the spin and 
the field operators, setting 

V = ~ cr/r (6) 
J~A 

where the coupling func t ionf i s  a fixed element in ,~. 
This concludes the description of the model. 

2.3. The Stochastic Dynamics 

We apply to the model the formalism of generalized master equations. 
If we choose the initial state of Y~a to be equilibrium state I-~j~A ~j of the 
bath, we remark that we are in the mathematical setting of Ref. 11 (see 
Appendix A). ~ is finite dimensional and V is bounded on ~ | ~ since 
the Fermi field operators are bounded on ~ .  Moreover, due to (3) and (2), 
the properties (ii) and (iii) of Appendix A are satisfied. 

It is not an elementary task to check that the weak coupling limit theo- 
rem applies. This is indeed the case if there is a suificiently fast decrease of 
the time correlation functions of the bath. 

Proposition 1. Suppose that the coupling function f in (6) is such 
that [C(t)[ ~< a/(1 + [tl)t+~for somea > 0 and ~ > 0; then the weak coup- 
ling limit theorem holds true, and the generator G of the evolution of the 
classical part of the spin system is given by formula (A.9). 

For the proof, we refer the reader to the Section 2 of Ref. 11. A slight 
difference from the case treated in Ref. 11 is that our bath is made of a finite 
number of Fermi fields instead of only one. The integrability of the time 
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correlation functions of the bath is essential for the proof. This property 
depends in turn on the behavior at p = 0 of the energy spectrum of the 
excitations in the bath. It is verified, for instance, for the p2 law, since it 
is well known that C(t )  given by (5) satisfies the estimate C(t)  = 0 0  -8t2) 
for a large class of r e  ~~ (spreading of the wave packet). 

Proposi t ion 2. Suppose that the initial state/z of the spin system is 
classical. Then: 

(a) The state F, is classical for all r /> 0. 
(b) The semigroup defines a Markov process on the set of configurations 

co with transition matrix given by 

(GF)(~) = ~ y(mj(oJ)){[1 -- ~o(j) tanh flmj(~o)]/z(%.) 
YeA 

- [1 + oJ(j) tanh flmj(o0]~(~o)} (7) 

with 

7(x) = �89 + C(-2x)]  = y ( - x )  t> 0 

.fo,(k), k # j 
mj(o~) = k~A ~ J,~oJ(k); ~oj(k) = ~._ ~o(k), k = j 

(c) The canonical distribution FB(co) = {exp[--fiHl(o~)]}/~,mexp[--fiHl(o~)] 
is a stationary state. If  C(x)  is strictly positive, FB is the unique stationary 
state and every state converges to it as r --~ m. 

Proof. To verify (a) and (b) one has to write G explicitly in terms of the 
interaction (6). We notice first that in virtue of the properties (ii) and (iii), 
(A.5) gives simply 

K(O, s) = P ~ U ? ~ ?  (8) 

Inserting in (8) the definition of the operators ~ and P, one gets 

f : a s  [~,%x(s).C,j(-s) - ~ ,x .~x ( s )G , ( s )  

- ~j~(s)m,,xc, A - s )  + ~j~(s)~ ,G,(s )]  

f: = - ds ~ .  M % ~ ( s ) ~ C ( - s )  - ~ j ~ j X ( s ) C ( s )  
j ~ A  

- aj~(s)F,Tj~C(-s)  + Faj~(s)cr/:C(s)l (9) 
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In obtaining (9) use has been made of the stationarity of t~ and i-li~A ~i 
under the free evolution and of the fact that Fermi fields attached to different 
lattice sites are uncorrelated: 

Cir = < ~ o , [ e x p ( - i h s ) f l % ( f ) )  = 3 , jC(s)  

The time evolution of the spin operators in (9) is given by 

crjx(s) = exp( -  i H l s ) o j  x e x p ( i H l s )  

= e x p ( - 2 i m j s ) %  + + e x p ( 2 i m j s ) % -  (10) 

with mj = ~k~A Jjkok ~- 
Equations (9) and (10) show that if/~ is classical, G/z has no off-diagonal 

elements. Indeed, terms in (9) that are bilinear in {%+, %+} or {%-, aj-} 
vanish and terms that are bilinear in {%+, ~i-} or {aj-, aj+} are diagonal 
on the states X,0. Then the same property holds for G"/z, n = 2, 3,..,  and 
hence for /~  = ~,%0 ( r ' /n ! )G" l  ~, showing that (a) is true. 

Part (b) is obtained by calculating the diagonal elements (Xo,, Gt~xo~). 
We have 

(Xo~, %x%X(s)l~Xo~) = {exp[2imj(oJ)s](1 + w(j))/2 

+ e x p [ - Z i m j ( w ) s ] ( 1  - co(j))/2}t~(oJ) 

(X~, ~/:~crJX(s)xo,) = {exp[2imj(o~)s](1 + ~o(j))/2 

+ exp[ -2 imj (oJ ) s ] (1  - oJ(j))/2}t~(oJj) 

and similar expressions for the other terms in (9). Inserting this in (9) and 
using the Kubo-Martin-Schwinger condition (4) for the Fourier transform 
~(x) of the correlation function C( t ) ,  one gets (7). The fact that the canonical 
distribution is stationary is seen by direct calculation. 

If  ~(x) > 0 for all x, ~,(mj(o~)) is strictly positive for all configurations 
oJ and all j a A. Therefore all pairs of configurations {o~, %} differing by one 
spin flip are connected by the nonvanishing matrix element y(mj(oJ)) • 
[1 - oJ(j) tanh/3mj(oJ)]. From this, we conclude that all pairs of configura- 
tions are connected by a sequence of nonvanishing matrix elements; thus 
the process is irreducible and part (c) follows. 

The master equation (7) has essentially the same structure as that which 
can be found in the literature. However, it is expressed here in terms of the 
rescaled evolution parameter r, and the transition rate of spin flips is not 
a constant independent of the configurations, but it is determined by the 
function (~(x). We should add that the validity of this analysis is not limited 
to the interaction V that we have chosen. By modifying the spin operator 
part in V, one can generate a variety of processes, all of them admitting the 
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canonical distribution as stationary state. In particular it is clear that poly- 
nomial interactions in the single spin operators will lead to multi-spin-flip 
Markov processes. The weak coupling limit theory can also be extended to 
the case where polynomials in the Fermi fields are considered. (1~) 

3. D Y N A M I C S  OF THE OPEN IS ING-WEISS MODEL 

In the Ising-Weiss model every spin interacts equally with every other 
spin through size-dependent forces. The model is defined by setting Jtj = 
-J].N, i ~ j, J > 0. (14) 

We are interested in the evolution equation for the probability dis- 
tribution of the magnetization density aN(o))= (1 /N)~ j~Aw( j )  in the 
thermodynamic limit. In order to formulate precisely the passage from the 
microscopic to the macroscopic description, we introduce the following 
class of states #N.~ Consider first the set of observables A(~o) on phase space 
which are functions only of the macroscopic observable a N: 

A(to) = f(aN(to)) 

where f ( x )  belongs to the class Co of real-valued continuous functions on 
R with compact support. We say that the sequence/z N of states is macro- 
scopic if 

lim /zN(f) = lim ~ #N(w)f(aN(O~)) = Iz(f) 
N ~ c o  N ~ c o  -Z 

exists for a l l f~  Co. The limit/~(f) is then clearly a bounded, positive linear 
functional on Co. By the Riesz representation theorem, it is given by a 
probability measure dt~(a)'on R such that p(f)  = f dtz(a)f(a). Here/z is the 
probability measure of the macroscopic observable associated with the 
states/z N. 

The next proposition shows that in the class of macroscopic states of 
the Ising-Weiss model, the microscopic evolution (7) induces an evolution 
equation for the macroscopic probability measures /~. Furthermore, the 
evolution equation for/z is generated by a simple nonlinear differential equa- 
tion for the magnetization density a. 

Proposition 3. Let/z N be a macroscopic sequence of states with associ- 
ated probability measure/~ on R. Then: 

(a) l imn~, ( G n l z o ( f ) =  I~(hf') for all f belonging to the set Co x of 
continuously differentiable functions, with f ' ( a ) =  (d]da)f(a) and h(a)=  
2y(Ja)(tanh flJc~ -- ~). 

4 From now on we indicate the volume dependence by the index N. 
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(b) The evolution equation for the probability measure 

(d/dr)p,( f )  = tz,(hf') (11) 

is solved by 

t~ ( f )  = Ix(A), f~(a) = f ( a  0 

where a~ is the solution of the differential equation 

da,/d-r = h(aO (12) 

with initial condition a. 

ProoL We consider first the action of GN on local observables AA de- 
pending only on the variables o~(j) for j ~ A __ A. One has from (7) for 
A__.A 

(G%~)(A~) = ~ (G~N)(~)A~(~') 
o~ 

-- ~ ~ y(mj(~o))[1 + oJ(j) tanh ~mj(oJ)] 
co 5 c A  

• [Az~(tos) - AA(co)]t~N(r (13) 

To get (13), we changed the dummy summation variable r into oJ s and used 
~oj(j) = -oJ(j),  mj(o~) = mj(cos) (since J .  = 0). 

Inserting mj(oJ) = -J[aN(co) - oJ(j)/N], ~N(oJj) = aN(co) -- 2oJ(j)/N, 
and A6(co) = f(a~(oJ)) in (13), we get 

Sincef is  continuously differentiable, we can write 

Since ~,(x) is the Fourier transform of a L~ ~ function, it is uniformly con- 
tinuous as well as tanh x and we have also 

y(J[ar~(to) - ~ ] ) ( 1 -  ~o(j)tanh tiff[aN(to) - ~(NJ-~)]) 

= ~,(JaN(to))[1 -- to(j)tanh ~JaN(,o)] + 0(1) 
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Using the fact that  the functions 7(x), tanh x, and f ' ( x )  are bounded,  we 
deduce that  

N 

(Gnl~N)(f) = t~n(hf ') + O(1 /N)  ~ ~ I~N(w) = I~N(hf ') + 0(1) 
t oJ 

f rom which (a) follows. For  part  (b) one proceeds to a direct verification. 
Let us discuss the main features o f  the solution o f  (12). Then the proper-  

ties o f  the evolution o f  probabil i ty measures follow immediately f rom those 
o f  the one-dimensional flow generated by (12). 5 

1. y(x) does not  vanish and is a slowly varying function. The zeros o f  
h(a) are then those o f  tanh 3Ja - a. 

For  T > T~, 6 h(a) has a unique zero c~ = 0 at the origin. It  is a stable 
attracting point  since the linearization hL(a) o f  h(a) in the ne ighborhood  of  
c~ = 0 gives hL(c0 = - c ~ ,  with e = 27(0)(1 - / 3 J )  > 0. At  T = Tc, one has 
c = 0 and there is a bifurcation. For  T < T~, two new attracting s tat ionary 
points occur at a = m+ and a = m_ (m+ = - m _  > 0), the origin being 
now an unstable stat ionary point. The linearized par t  hL(a) of  h(a) in the 
ne ighborhood  o f  a stable equilibrium po in t  is now hL(a) = --c(a -- m), 
with 

c = 2y(Jm)[1 - 3J(cosh f lJm)  -2] > 0 (14) 

The domain  o f  at tract ion o f  m+ (resp. m_)  is the set o f  all positive initial 
conditions a > 0 (resp. a < 0) and the approach  to equilibrium is exponen- 
tial:  

c% L = (a - rn)exp(-c~-)  + m 

The mathematical  sense in which the linearized mot ion  c~ L approximates 
the fiall solution is made precise in Appendix  B. 

At  T = To, the relaxation time c -1 diverges as IT- To1-1 and the 
tanh c~ - a has a triple zero, giving rise to the critical slowing down a~ ___ 

[~-2 + ~,(0),1-1~2. 
2. We investigate the influence o f  the bath on the relaxation. 
(a) 7(Ja) has a sha rp  min imum at a = al, with 0 < 7(Jal)  << 1. In i t ia l  

conditions chosen in a ne ighborhood  of  c~1 are t rapped in this region for  a 
long time, giving rise to a metastable situation. 

(b) 7(Jc0 itself has a zero at a = a~ > 0, which is a new stat ionary 
point. I f  7(x) is twice differentiable, this zero is necessarily double since 
~,(x) ) O. Then ~1 attracts initial conditions with a /> a~ and repulses initial 
condit ions with 0 < a < a~ (for T > T~). 

5 A detailed discussion can be found in Ref. 15. 
6 To is defined by flJ = (kTo)-lJ = 1. 
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A case of interest occurs if cq coincides with m+ (in the case T > To). 
Then h(=) has a zero of order three at m§ and this causes a considerably 
slower approach to equilibrium of the type 

~ ~ [(~ - m+) -2 + const x ~.]-1/2 + m+ 

Such a slowing is comparable to that which one observes at the critical 
temperature, although here it is an effect due to the bath. The occurrence of 
these various situations is of course linked to the structure of  d(x) ,  which 
depends in turn on coupling and on the energy spectrum of the bath. 

3. If  a constant external magnetic field B is applied, the only modifica- 
tion is to write tanh M(a  + B) in h(~). For small B and T, h(a) still has two 
zeros [assuming y(x)  strictly positive]. One of them is a stable equilibrium 
point with the direction of the magnetization opposed to that of the field. 
Such a phenomenon has been found in Ref. 4, where it is indicated that at 
finite volumes the relaxation time of the state increases exponentially with 
the volume. When B becomes larger (B > Be) this equilibrium state dis- 
appears, to give rise to a region of  metastability as in case 2(a). 

4. In order to take into account the fluctuations that occur when the 
volume of  the spin system is not strictly infinite, we calculate the first correc- 
tion of order 1 /N  to the infinite-volume limit generator limit_.= G N of 
Proposition 3(a). We find the equation 

d-~ t ~ ( f )  = Ix~ ' + K f "  (15) 

with K ( a ) =  2y(Ja)(1 - c~  tanh/3Ja). [Strictly speaking, h should also be 
modified to the order 1 /N  but we are only interested in retaining the effects 
of the diffusion term ( 1 / N ) K f " . ]  For T # Tc we again make the linear 
approximation in the neighborhood of a stable equilibrium point m: 

hL(oO = --c(~ -- m),  (1/N)KZ(r = [29,(Jrn)/N](1 - m 2) = D 

where c is given by (14). 
If  dt~(~) = p(~) d~ has a probability distribution p ( , ) ,  the equation for 

p,(a)  corresponding to (15) is the Fokker-Planck equation: 

c~ c ~ c~2 a--~ p~(c,) = ~ [(cz -- m)p,(c0] + h ~ p,(~) 

with diffusion coefficient D. 7 
Hence the stationary distribution is Gaussian and the magnetization 

has fluctuations (D/4c)  112 = O(N-1/2) .  
Since m2--+ 1 as T---> 0, D decreases with the temperature. I f  the tem- 

perature is critical, the behavior h ( ~ ) _  -3z~,(0)~ 3 leads to a stationary 

7 In this approximate calculation, we have neglected the limitation la[ ~< 1. 
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probability distribution of the form const x exp[(-N/12)~4]. As expected, 
the associated fluctuations are now of larger order, O(N-I/4). 

After the scaling of the magnetization ~ -+  N-1 /~ ,  the distribution 
takes the form const x exp(-cd/12).  It is interesting to note that this 
distribution, obtained as the stationary state of our evolution law, is pre- 
cisely the ferromagnetic equilibrium distribution considered by Simon and 
Griffith (16~ for the critical temperature/3J = 1. 

4. C O N C L U D I N G  R E M A R K S  

Although we deal with a less complex situation, our study can be com- 
pared to the recent work by Hepp and Lieb C17'18~ on the reservoir-driven 
laser. In both cases one derives an irreversible behavior (with a bifurcation 
in the motion) from a definite microscopic Hamiltonian model without the 
recourse to ad hoc statistical assumptions. We wish to point out some 
similarities and some differences. 

In the case of the laser, initial states of  the reservoirs may be taken at 
zero temperature and the laser makes its phase transition out of equilibrium 
when the coupling parameters to the reservoir are varied. Here the bifurca- 
tion occurs when the temperature of the initial state of the bath changes, 
the coupling being kept always the same. 

The Markovian character of  the evolution of the laser is obtained by 
the use of so-called "singular reservoirs." Singular reservoirs have a linear 
energy spectrum (hence not bounded below). They give rise to white noise 
processes where temporal correlations are Dirac functions. In our case, the 
Markovian character results from the application of the weak coupling limit. 
It does not seem that we could achieve the same description by the use of 
singular reservoirs, since white noise correlations are incompatible with the 
Kubo-Martin-Schwinger condition (4). As we have seen, this condition 
plays an essential role in bringing the temperature parameter into the equa- 
tions of motion. 

Another technical difference is that Hepp and Lieb focus their attention 
on the Heisenberg equations of  motion of the total system, whereas we follow 
the evolution of states and probability distributions. Notice that in both 
cases, the passage from microscopic to macroscopic is done in the same way 
(they use the term classical to denote states that we call macroscopic). 

The two models share common features essential for their solvability. 
The first is their mean field nature. Second, reservoirs are made of indepen- 
dent components attached to each degree of freedom of  the system of interest 
(each individual atom or lattice site has its own private bath !). If  all the spins 
were to interact with a common bath, correlation could be introduced be- 
tween them via the bath in the course of  the evolution. In particular, the 
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assertion (a) of Proposition 2 would fail to be true. How to treat this point 
(not to mention dealing with more realistic non-quasifree baths) and how to 
go beyond mean field Hamiltonians are open problems in both models. 

A P P E N D I X  A 

We recall briefly the framework of generalized master equations and 
the weak coupling limit following Ref. 1 1 (for a full mathematical analysis, 
see Ref. 1 1). Let 211 and Z2 be two quantum systems described in Hilbert 
spaces ~ and ~ ,  and let ~1, N2, and ~ be the Banach spaces of trace class 
operators on Yf~, ~ ,  and ~ | ~ ,  respectively. We assume that ~ is finite 
dimensional. 

A self-adjoint Hamiltonian is given for the total system in the form 
H =/-/1 + / / 2  + AV, where //1 and //2 govern the evolutions of Y'I and 
I;2, and the interaction V is assumed to be a bounded operator on 3fz | ~ .  
These Hamiltonians induce evolution groups of isometries on N by the 
formulas 

Ut~ = exp[-i(H1 + H2)t] p exp[i(H1 + H2)t] 
(A.1) 

Utp = exp(-  iHt) p exp(iHt), p e 

We suppose that the one-parameter group U, ~ of free evolution is 
strongly continuous on N (i.e., with respect to the trace-norm topology) 
and hence is generated by a densely defined and closed operator Ao. We 
write 

U, ~ = exp(Aot) (A.2a) 

with Ao acting formally as the commutator 

Aop = - i [H~  + H2, p] on :~ (A.2b) 

In the same way Ut = exp(At) is generated by A = Ao + Ar r with 
$/'p = - i [ V ,  O], r being bounded on N (since by assumption Vis bounded 
on ~ | Jd2). 

We identify now ~1, the set of states of a system of interest, with a 
subspace of ~ by the projection 

Pp = (Tra~= p) | pa (A.3) 

where p2 is a given fixed state in ~2- (The projector technique initiated by 
Zwanzig (~9~ has been used by many authors in various contexts; see refer- 
enees in Ref. 20.) 

The partial trace operation Trge2 on p maps ~ onto ,~ ,  whereas tensor 
multiplication by p2 defines P as an action from N into ~. 
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The state pt = PUtpo = (Trae2 (-/tOo) | P2 contains all the information 
relevant to Z1 at time t when the initial condition for the coupled system is 

Po. 
We introduce three physical assumptions which are suitable when 222 

plays the role of a thermal bath. 

(i) The two systems at time t = 0 are uncorrelated, that is, po is of the 
form pl | p2. 

(ii) The initial state P2 of E2 is stationary: 

exp ( - iH2 t )  p2 exp( iH2t )  = P2 

(iii) The average value of the interaction in the initial state of Z2 is 
zero: 

Trae2 Vp2 = 0 

The interpretation of (i) and (ii) is immediate and (iii) means that Z2 
does not exert any external driving force on Z1. 

It is convenient to choose the fixed state P2 entering the definition 
(A.3) of P to be precisely the initial state of Z2. With this choice, one checks 
that, in virtue of (i)-(iii), P enjoys the following properties: 

(i) The initial state is invariant under P:  

PPI @ Ps = P1| P2 

(ii) The free evolution leaves the subspace P ~  invariant: 

[ P , U ? ] = 0  on 

(iii) The restriction of  ~" to the subspace PM vanishes: 

p~V'p = 0 

The state Pt, whose time development we want to investigate, can be 
written as well with (i) as 

pt = PUtpo = PUtPpo  

and the problem amounts to computing the restriction PU~P of the full 
evolution to the subspace P ~ .  One finds that pt satisfies the following integral 
equation: 

J;f  m = U?po + a 2 ds duU~ s - u)p~ (A.4) 

with kernel K(A, s) acting on P N  given by 

K(A, s) = P~r - P)U,~(1 - P)~//'P (A.5) 
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where U, a is the one-parameter group generated by A0 + A(1 - P)"V'(1 - P). 
Equation (A.4) is particularly well adapted to the study of  time evolution 
of the subset d of the observables of Y~I, which are constants of the motion 
of El ,  

d = { C o n ~ :  [ C , / / 1 1 = 0 }  

Clearly such observables will evolve at a slow rate when a weak coupling 
with an external system is switched on, and we shall restrict our attention 
to the time development of  these observables. 

Let us now describe the mechanism of the weak coupling limit on (A.4) 
for the class of observables in d (for a precise mathematical statement see 
Theorem 2.1 in Ref. 11). 

If  we evaluate both members of (A.4) on an observable C, belonging to 
d ,  we get, with the notation Tr ptC = (pt, C) ,  

(pL, C)  = (po, C )  + h 2 ds du (K(A,  s - u)p~, C )  

or in differential form 

f' (d[dt)(ot,  C )  = A 2 du (K(A, u)pt- , ,  C)  (A.6) 

The right-hand side of (A.6) is clearly a memory term involving p, at 
all times s anterior to t. If we let A -+ 0 in (A.6) with t fixed, we come back 
to the noninteracting situation. However, we obtain a nontrivial effect if 
we simultaneously scale the observation time of Y'I, setting t = A-%- with 
r fixed. We denote by t~ = pt the state expressed as a function of the new 
parameter r and with this change of  variable (A.6) becomes 

h - 2 ~  / ,  

(d/dr)(tL,, C )  = [ du (K(A, u)/z~_a% , C)  (A.7) 
,t o 

Letting now formally h--+ 0 in (A.7), the limit state obeys an ordinary dif- 
ferential equation of semigroup type in the scaled time variable 

(d[d'r)(t~,, C )  = (ate, ,  C )  (A.8) 

with 

6 = du K(O, u) (A.9) 

A P P E N D I X  B 

We give a functional analysis treatment of Eq. (11) with the purpose of 
exhibiting its structure when there aresevera l  stable equilibrium points. 
Let Co be the set of  continuous functions with compact support on R and 
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norm If] = sup,~R [f(a)l" Its dual space ~ is the Banach space of  bounded 
measures on R with I~1 -- sup,~co [l~(f)l/lfl] = total variation of/z. 

We shall also consider the subspace ~ of ~ of measures d/z(a) = 
p(a) da having densities p(a) with respect to Lebesgue measure with [/~1 = 
f Ip(~)[ d(~) < m. The solution of (11) defines a semigroup V, on & by 
(V, tz)(f) =/z(f~). When T < Tc there are two stationary measures 3 ~ ,  
V, Sm, = 8m~, which are the stable equilibrium points corresponding to 
the two possible thermodynamic phases. We shall assume in the following 
that ~,(x) does not vanish and is twice continuously differentiable. We intro- 
duce the semigroups of linearized motion around the equilibrium point m~, 

(Udz)(f) =/z(f~*), f ~ ( ~ )  = f ( ( ~ -  m~)exp(-c~-)  + m• 

with c given by (14). 
We are interested in the following questions: 

1. In which sense does the linearized motion approximate the full 
motion ? 

2. How does one determine in general the sets of initial conditions in 
that are attracted by stable equilibrium points ? 

L o m m a  1. V~ and U~ • are bounded groups of isometries on ~ ,  

V~ is a group since (12) can also be solved for ~- < 0. l(V,~)(f)l ~< 
1~1 If~[ ~< I~1 Ifl implies t v ~ l  ~< 1~1 and since this holds for all z and all/z, 

[v~t,I = 1~1. 

Proposition 4.8 

w-lim U~_~Vd~ exists for all/z in ~ (B. 1) 
~,-+ cO 

s-lira V_~U~• exists for all t~ in ~ (B.2) 
l , , *  O0 

Proof. Let t~ be in ~ and f a continuously differentiable function in Co. 
We show that 

l(U+-,~ v , ~ ) ( f )  - (~:+-,~v~)(f) l  ~< _~ (B.3) 

is a Cauchy sequence in ~-~ and ~-z. One has 

d (U+..c, Vdz)(f) = d d~ ~ ( V ~ ) ( f  --+a) 

I~11 h(f-+o) ' + 

= (Vdz)[h(f..+), d .+] +~.t: ] 

d + 

e w - -  l i m ~  co/~n = t~ m e a n s  l i m ~  ~ / ~ ( f )  = / z ( f )  f o r  a l l f ~  Co,  a n d  s - l i m ~  | ~ = /~ 

m e a n s  l i m ~ . |  IP~ - t~[ = 0 .  
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We calculate 

0 ~ ] f ( ( ~  m+) exp(cg) s.,l[,(.>,+ +m+> I 
= sup [[h(a) + c(a - m+)] exp(ca)f'((a - m+)exp(ca) + m+)[ 

ff 

= sup [[h((c~ - m+)exp( -ea)  + m+)exp(ea) + c(a - m+)]f'(u)[ 

(~ - -  m + ) 2  I 
= exp(-ca)  sup h"(~) 2 f ' (u) l exp( -  c~)Ms (B.4) 

where we have used the Taylor formula: 

h((~ - m+)exp(-cg)  + m+) = - c (~  - m+)exp(-cg)  

+ �89 - m + )  ~. 
2 h"(~) exp( -  2ca) 

rain(% m+) ~< ~ ~< max(a, m+) 

Therefore [(d/da)(U+~V~t~)(f)[ <~ exp(-  ca)]t~[Mr is integrable at a = 0% 
showing that (B.3) converges as zl, ~2---> oo. Since the set of differentiable 
functions is dense in Co and the groups V~ and U~ + are bounded uniformly 
in z, the limit (B. 1) exists for all f i n  Co. This proves the first assertion of the 
proposition. 

For the second one, we proceed in a similar way. Let t~ in ~z have a 
continuously differentiable density p(~) with compact support; then 

U + U. + [(d/d,,)V_,U~+t~l d,, 
2 

From the definitions and with the help of an integration by parts we get the 
estimate as in (B.4): 

d 

I d ~< lfl J [~{p(a)[h((~-  m+)exp ( - c~ )+  m+)exp(ce)+ c ( ~ -  m+)]} d~ 

~< exp( -  c~)[flM, 

Hence the limit (B.2) exists, and on all of M~ by density. 
We denote by I'~t~ for t~ in ~ and ~ t ~  for t~ in M1 the linear applica- 

tions defined by the limits (B.1) and (B.2), respectively. Then I'~ and fl~ 
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enjoy the following properties, which one derives immediately from the 
definitions and from Proposition 4. 

Lernma 2. ( i ) I r , d  < 1 ~ 1 , ~ ;  I ~ l  = I~l, ~ 1 .  
(ii) V~f~/x = f~,U,~/x, /xr  
(iii) P . , ~ . / ,  = / , ,  t* E~'~. 
(iv) P,~f~,t* = O, t , e & .  

Property (iv) holds because 

F ~ / x  =w-lim U~_,V,V_,U**~ = w-lim U~_~U~*Ix 
~--+ 60 r oo 

and by dominated convergence, 

(U~=,U('g)(f) = f dlx(a)f(a + (m. - m~)[exp(cr) - 1]) 

tends to zero f o r f e  Co as �9 --~ m. 
To interpret these results, we observe that if IL belongs to the range of 

t)+ ( t ) ) ,  V,t~ behaves asymptotically as the linearized evolution U,+P+/~ 
(U,-I'=/~). Indeed,/~ is of the form/~ = tl+v for some v e ~ l  and with (B.2) 
and (iii) of Lemma 2, 

I V , ~ -  u , + r + ~ l  = l (V , a+  - u,+)vI 

= l (V_ ,U ,  + - a + > l  --> 0, ~ - +  

This implies in particular that the range of a+  [~ = ] belongs to the domain 
of attraction of the equilibrium point 8m+ [3m_]. These two sets are disjoint 
by  property (iv) of Lemma 2, and one checks easily that measures in the 
range of f~+ [Q_] have support in (0, oo) [ ( - ~ ,  0)], as we have seen in 
Section 3, case I, T < To. 

It is interesting to observe that this mathematical structure is analogous 
to that which is encountered in multichannel scattering processes. The 
different thermodynamic phases are the channels and the linearized evolu= 
tions U,* are the free channel evolutions. Conditions (B.I) and (B.2) are 
the asymptotic conditions with channel "wave operators" ~ .  The ranges 
of f~+ and f~= (channel subspaces) correspond to the domains of attraction 
of stable equilibrium points. 
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